Identification of a lineage of multipotent hematopoietic progenitors.
نویسندگان
چکیده
All multipotent hematopoietic progenitors in C57BL-Thy-1.1 bone marrow are divided among three subpopulations of Thy-1.1(lo) Sca-1+ Lin(-/lo) c-kit+ cells: long-term reconstituting Mac-1- CD4- c-kit+ cells and transiently reconstituting Mac-1(lo) CD4- or Mac-1(lo) CD4(lo) cells. This study shows that the same populations, with similar functional activities, exist in mice whose hematopoietic systems were reconstituted by hematopoietic stem cells after lethal irradiation. We demonstrate that these populations form a lineage of multipotent progenitors from long-term self-renewing stem cells to the most mature multipotent progenitor population. In reconstituted mice, Mac-1- CD4- c-kit+ cells gave rise to Mac-1(lo) CD4- cells, which gave rise to Mac-1(lo) CD4(lo) cells. Mac-1- CD4- c-kit+ cells had long-term self-renewal potential, with each cell being capable of giving rise to more than 10(4) functionally similar Mac-1- CD4- c-kit+ cells. At least half of Mac-1(lo) CD4- cells had transient self-renewal potential, detected in the spleen 7 days after reconstitution. Mac-1(lo) CD4(lo) cells did not have detectable self-renewal potential. The identification of a lineage of multipotent progenitors provides an important tool for identifying genes that regulate self-renewal and lineage commitment.
منابع مشابه
Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.
Hematopoiesis is tightly controlled by transcription regulatory networks, but how and when specific transcription factors control lineage commitment are still largely unknown. Within the hematopoietic stem cell (Lin(-)Sca-1(+)c-Kit(+)) compartment these lineage-specific transcription factors are expressed at low levels but are up-regulated with the process of lineage specification. CCAAT/enhanc...
متن کاملIdentification of a Novel Developmental Stage Marking Lineage Commitment of Progenitor Thymocytes
Bipotent progenitors for T and natural killer (NK) lymphocytes are thought to exist among early precursor thymocytes. The identification and functional properties of such a progenitor population remain undefined. We report the identification of a novel developmental stage during fetal thymic ontogeny that delineates a population of T/NK-committed progenitors (NK1. 1(+)/CD117(+)/CD44(+)/CD25(-))...
متن کاملThe Branching Point in Erythro-Myeloid Differentiation
Development of mature blood cell progenies from hematopoietic stem cells involves the transition through lineage-restricted progenitors. The first branching point along this developmental process is thought to separate the erythro-myeloid and lymphoid lineage fate by yielding two intermediate progenitors, the common myeloid and the common lymphoid progenitors (CMPs and CLPs). Here, we use singl...
متن کاملPU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors.
Little is known about the transcription factors that mediate lineage commitment of multipotent hematopoietic precursors. One candidate is the Ets family transcription factor PU.1, which is expressed in myeloid and B cells and is required for the development of both these lineages. We show here that the factor specifically instructs transformed multipotent hematopoietic progenitors to differenti...
متن کاملPbx1 restrains myeloid maturation while preserving lymphoid potential in hematopoietic progenitors.
The capacity of the hematopoietic system to promptly respond to peripheral demands relies on adequate pools of progenitors able to transiently proliferate and differentiate in a regulated manner. However, little is known about factors that may restrain progenitor maturation to maintain their reservoirs. Conditional knockout mice for the Pbx1 proto-oncogene have a significant reduction in lineag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 124 10 شماره
صفحات -
تاریخ انتشار 1997